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Abstract
During the first years of life, infant vocalizations change con-
siderably, as infants develop the vocalization skills that enable
them to produce speech sounds. Characterizations based on
specific acoustic features, protophone categories, or phonetic
transcription are able to provide a representation of the sounds
infants make at different ages and in different contexts but do
not fully describe how sounds are perceived by listeners, can
be inefficient to obtain at large scales, and are difficult to visu-
alize in two dimensions without additional statistical process-
ing. Machine-learning-based approaches provide the opportu-
nity to complement these characterizations with purely data-
driven representations of infant sounds. Here, we use spectral
features extraction and unsupervised machine learning, specif-
ically Uniform Manifold Approximation (UMAP), to obtain a
novel 2-dimensional spatial representation of infant and care-
giver vocalizations extracted from day-long home recordings.
UMAP yields a continuous and well-distributed space con-
ducive to certain analyses of infant vocal development. For
instance, we found that the dispersion of infant vocalization
acoustics within the 2-D space over a day increased from 3 to 9
months, and then decreased from 9 to 18 months. The method
also permits analysis of similarity between infant and adult vo-
calizations, which also shows changes with infant age.
Index Terms: infant vocalization, visualization, UMAP,
MFCCs, unsupervised learning

1. Introduction
Human infant vocal repertoires undergo dramatic, multifaceted,
and linguistically significant changes over the first two years
of postnatal life. At birth, infants produce simple precursors
to speech sounds, predominantly quasivowels and other short,
quiet sounds [1, 2]. Over subsequent months, the sounds they
produce diversify and become more complex, to include a range
of loudness, vocal qualities, pitches and pitch contours, dura-
tions, and primitive consonant productions. By about 7 months,
they begin to produce canonical babbles (which contain speech-
like syllables combining consonants and vowels); over the fol-
lowing months and years, additional changes in infant vocal
repertoires and vocal motor control continue [1, 3, 4]. This
learning provides an essential foundation for linguistic commu-
nication, and is believed to be supported both by intrinsically-
motivated play and by contingent and often imitative interac-
tions with adult caregivers [5, 6, 7, 8, 9, 10, 11]. Infant lan-
guage acquisition in general is strongly influenced by auditory
inputs from caregivers and other environmental sound sources
(e.g., [12, 7, 13, 14]). An infant’s auditory environment includes
voices from caregivers and other individuals of differing ages
and genders plus a wide range of other sound sources, such as
animals, physical objects, and electronic devices. The presence
of these many different types of sound sources, the high variety

of sounds produced by each, and the wide range of sound types
produced by infants themselves present a challenge for charac-
terizing infant vocal productions and auditory inputs.

Most characterizations of infant vocalizations are based on
acoustic analyses of specific acoustic features (such as funda-
mental frequency and formant frequencies (e.g., [15, 16]), hu-
man listener categorizations into protophone categories (e.g.
quasivowel, canonical babble, etc.) [1, 3, 2], or phonetic tran-
scription [4]. A limitation of these methods is that they don’t
provide a fully comprehensive characterization of a sound. For
example, two sounds may be similar in their pitch characteris-
tics but differ in terms of the phonetic features they contain.
Or the sounds may belong to the same protophone category
but still acoustically differ considerably and be perceived dif-
ferently by listeners. Data-driven analyses of raw acoustic in-
formation could provide a complementary approach.

Sainburg et al. [17] showed the power of using Uniform
Manifold Aproximation (UMAP) [18], a machine-learning
method for reducing a high-dimensional acoustic dataset into
a two-dimensional space, to represent human speech sounds
as well as songbird syllables. For human speech, different
phonetic categories tended to project to distinct regions of la-
tent space. For birdsong, the repertoires of different songbird
species could be represented in the same overall space, enabling
comparisons across species.

Here we apply spectral features extraction and UMAP to
transform raw acoustic data from daylong home audio record-
ings of 3- to 18-month-old infants. This generates a two-
dimensional spatial representation of infant and caregiver vo-
calizations. We then use this space to quantify, for each day-
long recording (1) the similarity between infant and caregiver
vocalizations and (2) the diversity (i.e., the amount of variation)
across infant vocal productions on the day of recording. Finally,
we assess how these measures vary with infant age.

2. Methods1

2.1. Dataset and preprocessing

Our infant and adult vocalization data comes from long-form
(10+ daytime hours), child-centered home recordings. 52 in-
fants were recorded longitudinally at 3, 6, 9 and 18 months us-
ing the LENA system [19]. A few infants did not complete all
four recordings; we focused on the subset of 42 infants who
did have complete data. More details about the data collec-
tion methods can be found in [16]. A subset of the recordings
are available in the Warlaumont corpus [20] within HomeBank
[21]. We extracted short audio clips of duration 0.6s to 12s
for sections of the recording labeled by LENA’s built-in algo-
rithm [22] as one of the following four types: class CHNNSP

1More details are available at https://github.com/spagliarini/Infant-
vocalization-space-Interspeech2022
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contains cry/laugh (non-speech-related) vocalization produced
by the infant wearing the recorder, class CHNSP (child speech-
related) contains speech or protophone vocalizations produced
by the infant wearing the recorder, class FAN (female adult
near) contains adult female vocalization, and class MAN (male
adult near) contains adult male vocalizations. Although LENA
also tags other sound sources (noise, television, other adults,
other children, overlap), for the present study we included only
the infant and their adult caregivers. Table 1 gives the number
of instances of each class across the 42 participants.

Table 1: Total utterances for each LENA sound category

Age(months) CHNNSP CHNSP FAN MAN
3 32631 39110 84999 35170
6 29928 43932 70491 29674
9 32007 45246 69802 29629
18 32852 60024 69351 31949

2.2. Low-dimensional vocalization space

2.2.1. Spectral feature extraction

We used openSMILE [23] to extract 13 Mel-frequency cep-
stral coefficients (MFCCs) from 26 Mel-frequency bands (with
25ms frame size and 10ms frame rate). Each MFCC’s first
and second derivatives (i.e., velocity and acceleration) were also
computed, generating an additional 26 features. This gave us,
for each child or adult vocalization clip, a 39× T matrix where
T was the number of timebins in the clip. We then summed
across each matrix’s timebins, yielding a 39-dimensional vector
for each sound clip.

2.2.2. Dimensionality reduction

From collections of these feature vectors we obtained a 2D
representation of the vocalization space using Uniform Man-
ifold Approximation and Projection for Dimension Reduction
(UMAP) [18]. Similar to t-distributed stochastic neighbor em-
bedding (t-SNE [24]), UMAP is a dimension reduction tech-
nique where the result axes do not represent single, meaningful
discriminant features. In particular, UMAP (1) can be used to
perform non-linear dimensionality reduction, (2) has a higher
computational efficiency than t-SNE, and (3) can be non-local
(i.e., it can take into account distances between points that are
located far apart from each other). The tuning of UMAP hyper-
parameters enables more or less local representation of the data.
A smaller neighborhood size nneigh means a more locally-
focused representation; larger values will push UMAP to look
at larger neighborhoods of each point when estimating the man-
ifold structure of the data. The minimum distance mindist pa-
rameter determines how far points are allowed to be from each
other in the low dimensional representation; this also influences
the balance of emphasis on local detail vs. broad structure. We
used the UMAP Python package2 [18].We chose nneigh = 15
and mindist = 0.1.

2.2.3. Statistical analyses

For each daylong recording, we measured (1) the distance from
the centroid of the infant vocalizations to the centroid of the
FAN vocalizations (we focused our statistical analyses in this
initial study on CHNSP-to-FAN distance because some record-
ings had extremely few MAN vocalizations), (2) the average

2https://github.com/lmcinnes/umap

distance from the infant vocalizations to the infant’s centroid
and (3) the Shannon entropy of CHNSP vocalizations.

We then performed (in R, using lme4 [25] and lmerTest
[26]) linear mixed effects regressions with infant ID as a ran-
dom effect and the number of infant vocalizations in the day-
long recording as a covariate to test the hypothesis that infant
age influences (1) the distance between the centroid of the infant
vocalizations and the centroid of the adult female vocalizations,
(2) the average distance from individual infant vocalization lo-
cations to the infant vocalization centroid, and (3) the Shannon
entropy of the infant vocalization locations. We included both
linear and quadratic terms for age in each regression.

3. Results
3.1. UMAP-based low-dimensional vocalizations space

Vocalizations clustered together according to the sound type
classes, but with a large amount of overlap. This can be ob-
served in the vocalization space obtained from the collection
of infant speech-related (CHNSP), adult male (MAN) and adult
female vocalizations (FAN) (left panel of Fig. 1a; our analyses
below focus on this space) and in a vocalizations space obtained
from the collection of both types of infant sounds (CHNSP and
CHNNSP) (right panel of Fig. 1a). Similarly, in a space con-
structed from a single daylong recording, vocalizations cluster
together when comparing the CHNSP and FAN vocalizations
(Fig. 1b). Figure 1b also illustrates the centroids of each class.

3.2. Similarity between infant and adult female vocaliza-
tions

We assessed the similarity between an infant’s vocalizations on
a given day and the corresponding adult female vocalizations
that infant was exposed to by calculating the distance from the
centroid of the infant vocalizations to the centroid of the adult
female vocalizations. There was a statistically significant pos-
itive quadratic effect of age on similarity between infant and
adult female (p < .001), with a decrease in centroid distance
from 3 to 9 months followed by an increase at 18 months (Fig-
ure 2a). This suggests that infant and adult female vocalizations
become increasingly similar from 3 to 9 months of age, and then
diverge again by the time infants get to be 18 months old.

3.3. Infant vocalization variability

For each infant recording, we assessed infant vocalization
variability by calculating the average distance of the infant’s
CHNSP vocalization locations from the class centroid in the
UMAP-generated space. We then asked if this variability
changed across infant age (Fig. 2b). Statistical analyses de-
tected both a linear (p < .001) and quadratic (p < .001) re-
lationship between age and infant vocalization variability. Both
effects were negative, indicating that the diversity of sounds in-
fants produced during a day rose to a peak at 9 months and then
decreased from then on, with the lowest variability observed at
18 months. Shannon entropy analysis (Fig. 2c) of the infant
non cry/laugh vocalizations replicated the inverted-U-shape ob-
served in the centroid analysis (Fig. 2b), with a statistically sig-
nificant negative quadratic term (p < .001).

3.4. tSNE-based vocalizations space

As mentioned in Section 2.2, tSNE is another method that can
be used to perform non-linear dimensionality reduction. The
space obtained using tSNE in place of UMAP for the CHNSP,



Figure 1: UMAP-based vocalization space. Representation of all vocalization clips in a space generated by applying UMAP to
MFCC features summed across the clip. Each point represents a vocal utterance as 39-dimensional vector (13 MFCCs, 13 MFCC
velocities, and 13 MFCC accelerations). (a) UMAP space obtained from non cry/laugh infant, adult male and female vocalization
clips. Each color represents a class: CHNSP are infant speech and pre-speech non cry/laugh vocalizations (blue dots), MAN and FAN
are respectively female (red dots) and male (yellow dots) adult vocalizations, CHNNSP are infant cry/laugh or vegetative. The left
panel shows the main space analysed in this paper, constructed based on CHNSP, FAN, and MAN clips. The right panel shows a space
constructed based on CHNNSP and CHNSP. (b) Example of a single 18-months old baby recording (extracted from the whole UMAP
space). The light blue dots represent the infant vocalizations (CHNSP), the pink dots represent the adult female vocalizations (FAN).
The centroid for class CHNSP is shown by the dark blue dot and the centroid for class FAN is the red dot.

Figure 2: Age-related changes in UMAP-based measures, comparisons to tSNE, and results for human-validated infant utterances.
Each star represents data from a particular infant’s recording at a given infant age. (a) Similarity between infant speech-related
(CHNSP) and adult female (FAN) vocalizations plotted as a function of age. (b) Variability of CHNSP vocalizations in the UMAP-based
vocalizations space, measured as distances to the CHNSP centroid, as a function of age. (c) Shannon entropy of CHNSP vocalizations
in the UMAP-based vocalizations space versus age. (d) Shannon entropy of CHNSP vocalizations in a tSNE-based vocalizations space
versus age. (e) Variability of CHNSP vocalizations in the UMAP-based vocalizations space for a subset of the recordings with child
vocalizations verified as such by human listeners. (f) Scatter plot showing the mean distance from centroid measure (for CHNSP)
when child vocalizations were identified automatically by LENA (y-axis) versus when those CHNSP clips were manually verified by
human listeners as being infant sounds and not mis-classifications by the labeling algorithm (x-axis). The black lines in panels (a-e)
represent data fitting obtained using polynomial regression on the represented data. The dashed line in (f) represents hypothetical 1:1
correspondence between the two labeling methods.



FAN, and MAN classes is shown in Figure 3. This figure can
be compared with the representation of the same data obtained
with UMAP (statistically significant quadratic term: p < .001),
shown in the left panel of Figure 1a. Interestingly, Shannon
entropy analysis (Fig. 2d) of the CHNSP vocalizations in the
tSNE-generated space (p = 0.03) do not appear to have a clear
U-shape with respect to age, as was observed in the UMAP
case (Figure 2(b-d)). (Given the high discontinuity of the tSNE-
based space, we do not compare centroid-based measurements.)

Figure 3: tSNE-based vocalizations space. Representation
of CHNSP (blue), FAN (red), and MAN (yellow) vocalization
clips in a space generated by applying tSNE to MFCC features
summed across each clip. Each point represents a vocal ut-
terance as 39-dimensional vector (13 MFCCs, 13 velocities,
and 13 acceleration). Vocalizations space obtained from non
cry/laugh infant, adult male and female vocalization clips. Each
color represents a class: CHNSP are infant speech and pre-
speech non cry/laugh vocalizations (blue dots), while MAN and
FAN are respectively female (red dots) and male (yellow dots)
adult vocalizations.

3.5. Validation of the dataset

For a subset of our data (9 recordings in total), we worked
with a team of ten human listeners to re-label the automatically
identified CHNSP clips. Listeners assigned a prominence value
P ∈ {1, 2, 3, 4, 5} to indicate if they believed the infant was
indeed vocalizing in the clip without any other sounds audible
(P = 1), if the infant was present but so were other sounds and
if so, what was the infant sound prominence relative to those
other sounds background noise and how much (1 < P < 5), or
if the infant wearing the recorder did not actually vocalize at all
during the clip (P = 5). For each clip, we computed the modal
value across listeners and defined a threshold for inclusion in the
strictest way possible: we validated a clip as infant prominent
if its modal value was equal to 1. Otherwise, we considered
the clip to be noise and excluded it from the study. We then
computed the mean distance of infant vocalizations (CHNSP)
from the class centroid (Figure 2e), and observed a comparable
trend with what we obtained from the whole dataset (Figure 2b).
We also observed that the range of this variability measure was
larger for the human-validated labels than for the fully auto-
mated LENA labels (Fig. 2f). The correlation between the two
sets of labels is equal to 0.47.

4. Discussion
We proposed a method based on spectral features extraction
(MFCC’s + their first and second derivatives, summed across
timebins for an utterance) and UMAP [18], an unsupervised
machine learning dimensionality reduction method, to represent
infants and adult vocalizations in a two-dimensional space. For
our dataset, this resulted in a relatively smooth distribution of
the data across space (in contrast with tSNE). Statistical anal-
yses revealed significant non-monotonic patterns of change in
age. Specifically, (1) the range of sound patterns infants pro-
duced (as quantified by distance-to-class centroid and Shannon
entropy) increased from 3 to 9 months and then decreased by
the time infants were 18-months-old. We also found that sim-
ilarity between infant and adult vocalizations increased from 3
to 9 months then decreased from 9 to 18 months.

We hypothesize that the increase from 3 to 9 months might
relate to the so-called “expansion stage” of infant protophone
development as well as to the onset of canonical babbling [1].
This might be tested by establishing if there is a relationship
between locations in the UMAP-constructed space and pro-
tophone categorizations of the infant sounds. We also note
that previous work [15] observed informally (without tests for
statistical significance) that as infant age increased from 3 to
9 months, so did the range of infant vocalization durations
and the formant frequency ranges. Our findings are consis-
tent with those trends for increasing acoustic variation from 3
to 9 months, but also show that by 18 months, the amount of
variation shows a decrease from its 9-month level. It would
be informative (1) to compare the relationship between adult
female and infant non cry/laugh vocalizations with the relation-
ship between adult female and infant cry/laugh vocalizations,
and (2) to connect the UMAP representations to more trans-
parent and commonly used acoustic features, such as duration,
formant frequencies, and pitch features.

A limitation is that LENA-generated sound source labels
are sometimes incorrect, and even when they are correct, there
are sometimes significant other sounds present [27]. To over-
come this problem, we are working to obtain a cleaner dataset
based on human listener judgments. Preliminary results (Sec-
tion 3.5) suggest that the overall qualitative patterns may not
change drastically, but additional work and data are needed.

In the future, variations on this approach could be ex-
plored, including alternative pre-processing and dimensional-
ity reduction methods. For instance, it could be useful to pre-
process the audio using end-to-end neural network approaches,
perhaps with a training goal of optimizing infant age predic-
tions. This may allow UMAP to be performed on more sophis-
ticated and more functionally-and practically-relevant acoustic
features. This general approach may be useful for characteriz-
ing the interactions between infants and caregivers, for studying
individual and clinical differences in vocal productions, and for
providing additional means for comparison of human infant be-
havior to that of computational models of vocal learning [28].
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