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ABSTRACT
Using neural networks to classify infant vocalisations into impor-
tant subclasses (such as crying versus speech) is an emergent task
in speech technology. One of the biggest roadblocks standing in the
way of progress lies in the datasets: The performance of a learning
model is affected by the labelling quality and size of the dataset
used, and infant vocalisation datasets with good quality labels tend
to be small. In this paper, we assess the performance of three mod-
els for infant VoCalisations Maturity (VCM) trained with a large
dataset annotated automatically using a purpose-built classifier and
a small dataset annotated by highly trained human coders. The two
datasets are used in three different training strategies, whose per-
formance is compared against a baseline model. The first training
strategy investigates adversarial training, while the second exploits
multi-task learning as the neural network trains on both datasets si-
multaneously. In the final strategy, we integrate adversarial training
and multi-task learning. All of the training strategies outperform
the baseline, with the adversarial training strategy yielding the best
results on the development set.
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1 INTRODUCTION
From birth, infants start producing vocalisations, some of which
are not linguistic – notably crying. Among those that are linguistic,
canonical babbles which typically emerge before 10 months of age,
consist of syllables with a vowel and a consonant sound [11] such
as ‘dada’ are more complex than non-canonical ones like ‘aaah’. In
broad terms, the proportion of vocalisations that are linguistic, as
well as the proportion of linguistic vocalisations that are canonical
as opposed to non-canonical, both increase with age [12, 19, 20].
Studying infant VoCalisation Maturity (VCM) is crucial for early
detection of language impairment risks, and to describe potential
group differences such as those that may appear between children
with/without a family history of impairment. Such research is also
relevant from a theoretical standpoint: If children who exhibit ab-
normal early vocal development have delayed or impaired language
later on, this supports the theory that early vocal patterns lay the
foundation of later language [10]. Recent research has exploited
day-long audio recordings gathered with an infant-worn device
because these can capture many samples of the child’s natural pro-
duction [6]; however, in most cases these 8-16h long recordings
cannot feasibly be completely annotated manually. Therefore, a cur-
rent goal is to improve automatic segmentation and classification
procedures [24].

One of the major problems for VCM classification is the lack of
carefully annotated data (see [19, 24] and references therein for
small-scale approaches). This is particularly troublesome for deep
learning approaches, which normally require large-scale data to
extract robust representations. One potential solution is to leverage
massive unlabelled or weakly supervised data. Here we propose
a weakly supervised framework, namely Adversarial Multi-Task
Learning (AMTL) to relax the high requirement of burdensome
human-annotated data (aka strongly labelled data), by exploiting
massive data (aka weakly labelled data) automatically annotated by
a third-party system, i. e., the LENA system [22]. The LENA system
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segmented and classified the audio according to sound source type;
these data are in many cases inaccurately segmented and classified,
and furthermore use different VCM categories. The proposed AMTL
framework combines two main learning strategies, i. e., the multi-
task learning (MTL) and the domain adversarial training. The first
tries to transfer the knowledge from the weakly labelled data to
our target task, whereas the latter strategy aims to alleviate the
domain mismatch between the two data distributions. Despite the
fact that AMTL has been introduced for text classification [8], this
is the first time to be investigated in the voice domain, to the best
of our knowledge.

2 METHODOLOGY
2.1 Multi-Task Learning (MTL)
The multi-task learning strategy jointly trains the model on several
different but relevant tasks simultaneously. In our case, the two
tasks refer to (1) a four-class target task on the strongly human-
labelled dataset (see Section 3.1 for more details); and (2) a two-
class source task on the weakly-labelled dataset (see Section 3.2
for more details). MTL is an effective approach to distill robust
representations shared across various tasks, and knowledge can
be potentially transferred from other source tasks to the target
one [23]. This is particularly beneficial to the target task when
it has limited training samples, because MTL strategy is able to
partially overcome the overfitting problem [25]. The middle and
right paths in Figure 1 show the network structure for the four-class
VCM task (target task) and the two-class VCM task (source task),
respectively.

Mathematically, the loss function of MTL can be written as the
following equation:

J(θд ,θs ,θw ) =
1
n

n∑
i=1

Li
s (θд ,θs ) + α

1
m

m∑
i=1

Li
w (θд ,θw ), (1)

where n andm denotes the number of strongly labelled data and
weakly labelled data; θд , θs , θw , respectively, represent the network
parameters of the feature extraction layers, of the classification
layers for the four-class target task trained on the strongly labelled
data, and of the classification layers for the two-class source task
trained on the weakly labelled data. Li

s and Li
w stand for the losses

(i. e., cross entropy) from target and source tasks, respectively, while
the hyper-parameter α controls the contributions from the source
task.

2.2 Adversarial Training
Despite the fact that MTL can transfer knowledge between multiple
tasks, it depends on the assumption that the tasks are from the
same or similar domains [8]. That is, it cannot guarantee that the
learnt high-level representations share the same space if the inputs
come from different domains [7, 8]. In this case, the underlying
information cannot freely flow over different tasks. To address the
domain mismatch issue, domain adversarial training, proposed by
Ganin et al. in 2014 [5], aims to learn the domain invariant features
among different data domains. In our cases, there are the strongly
labelled dataset (source domain) and the weakly labelled dataset
(target domain).

Figure 1: Framework of the introduced adversarial multi-
task learning for infant vocal maturity analysis

The architecture of the domain adversarial training is displayed
in Figure 1 with the middle and left paths. The feature extractor
projects the data from different separate domains into high-level
representations, which are discriminative for a VCM classifier (mid-
dle path) and indistinguishable for a domain classifier (left path).
The labels for the domain adversarial task correspond to the do-
mains, i.e. the datasets. We arbitrarily defined the labels of strongly
labelled data to be 0, and the labels of weakly labelled data to be
1. Mathematically, the networks are optimised by the following
objective function:

J(θд ,θs ,θd ) =
1
n

n∑
i=1

Li
s (θд ,θs )−

β(
1
n

n∑
i=1

Li
d (θд ,θd ) +

1
m

m∑
i=1

Li
d (θд ,θd )),

(2)

where Ls and Ld denote the classification loss from the VCM clas-
sifier and the domain classifier. A hyper-parameter beta is utilised
to tune the trade-off between the two tasks during the learning
process. Particularly, the parameters of the feature extractor (θд )
and VCM classifier (θs ) are obtained by minimising the objective
function as

(θ̂д , θ̂s ) = argmin
θ

J(θд ,θs , θ̂d ) (3)

In contrast, the parameters of the domain classifier (θd ) are trained
by maximising the objective function as

θ̂d = argmax
θ

J(θ̂д , θ̂s ,θd ) (4)

With such a minmax optimisation process, the representations
learnt from different domains cannot be easily distinguished [5].
Due to its efficiency, domain adversarial training is being used
widely in diverse applications, such as affective computing [7].

2.3 Adversarial Multi-Task Learning (AMTL)
As aforementioned, domain adversarial training is able to distil
the domain invariant representations, whereas MTL is efficient in
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extracting robust and discriminative representation among different
tasks. Adversarial multi-task learning takes advantages of both
learning strategies. Figure 1 shows the complete network structure
of AMTL.

Overall, the network parameters except the ones of the domain
classifiers are optimised by minimising this objective function:

J(θд ,θs ,θd ) =
1
n

n∑
i=1

Li
s (θд ,θs ) + α

1
m

m∑
i=1

Li
w (θд ,θw )−

β(
1
n

n∑
i=1

Li
d (θд ,θd ) +

1
m

m∑
i=1

Li
d (θд ,θd ))

(5)

Again, the hyper-parameters of α and β control the contributions
from MTL and domain adversarial training, respectively.

3 DATASETS
The next two subsections provide more detailed descriptions of the
two datasets used. Theywere partitioned into training, development
and test sets as shown in Table 1.

3.1 Strongly Labelled Dataset
The strongly labelled dataset is human labelled. It is the union
of several datasets. One group was collected using infant-worn
recorders that gathered audio data for whole days from 60 children
aged 3-36 months. Half heard US/Canadian English ([1, 9, 18]; some
in this group additionally heard Spanish or French); 10 children
were exposed to UK English [15], 10 to Tseltal [2], 10 to Argentinean
Spanish [14]; some of these day-long recordings are available from
HomeBank [17]. For each child, 15 2-minute long clips were ran-
domly sampled, segmented, and annotated using the ACLEW anno-
tation scheme [3], which includes two linguistic classes (canonical
and noncanonical vocalisations) and some non-linguistic classes
(crying, laughing). The rest of the data was collected in the lab from
15 English-learning infants aged 8-16 months [13]. These datasets
are merged into one, to increase the size of the dataset and obtain
better-performing models, which we refer to as the strongly human
labelled ACLEW dataset.

3.2 Weakly Labelled Dataset
The weakly labelled dataset came from the 20 day-long US record-
ings [1, 18], labelled in their entirety using the LENA system [22].
This system was developed to analyse day-long infant-centred
recordings, and includes a two-class linguistic versus non-linguistic
classification [21]. Linguistic vocalisations include canonical and
non-canonical; non-linguistic ones include crying, laughing, and
vegetative sounds such as burping. Previous work [21] found that
the precision of the LENA algorithm for (non-)linguistic was 75%
and 84%, respectively. We refer to this dataset as the weakly labelled
LENA dataset.

4 EXPERIMENTS AND RESULTS
In this section, we conducted tentative experiments on the datasets
as described in Section 3 to evaluate the performance of the ap-
proaches introduced in Section 2.

Table 1: Data distribution over different partitions and cat-
egories of the ACLEW and LENA datasets. Non-can stands
for non-canonical; can for canonical.

ACLEW
∑

non-can. can. crying other

Train 8 194 5 664 2 156 263 112
Develop 4 573 3 076 1 250 210 37
Test 4 060 2 956 827 234 44∑

16 827 11 696 4 233 707 193

LENA
∑

ling. non-ling.
(non-can./can.) (crying/other)

Train 28 572 17 012 11 560
Develop 4 317 2 939 1 378
Test 5 017 3 123 1 894∑

37 906 23 074 14 832

4.1 Experimental Setups
Based on the onset and offset information of VCM annotations, we
segmented each sample from the day-long recordings, leading to
16 827 and 37 906 samples of strongly labelled data (ACLEW) and
weakly labelled data (LENA), respectively. We randomly (without
considering which participant a sample was drawn from) split
these samples into training, development, and test sets. The data
distributions over the different partitions and VCM categories of
the ACLEW and LENA datasets are shown in Table 1.

We applied the widely used openSMILE [4] toolkit to extract
acoustic features, specifically the feature set designed for the In-
terspeech 2016 Computational Paralinguistics Challenge (Com-
ParE16) [16]. To obtain these features, we firstly extracted 65 low-
level descriptors (LLDs), as well as their first derivation (delta) at
the frame level, resulting in 130 LLDs per frame. Then, we applied
a set of functionals such as extremes, means, moments, percentiles,
and peaks to the sequential LLDs, resulting in 6 373 dimensional
static features per segment.

To evaluate the performance, we employed the frequently used
metrics of macro F1 and Unweighted Average Recall (UAR) for
VCM classification. Both UAR and F1 are calculated by the sum of
classwise recall or F1 divided by the number of classes. Thus, it
indicates the system performance in an unbalanced data distribution
case.

4.2 Network Training
When designing the framework, we used the conventional deep
neural network structure, which consists of multiple feed-forward
fully connected layers (dense layers) consisting of 100 nodes each,
with a random weight initialisation. ReLU activation function was
employed to address the overfitting and gradient vanishing prob-
lems. An L2 norm regularisation term with a control weight of
0.0001 was added to punish the weights with high values and a
dropout rate of 0.2 was applied to each dense layer, so as to further
reduce overfitting. We used three hidden layers for the shared net-
work (feature extracting model), and two hidden layers for each
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of the classification tasks. When training the network, Adam opti-
miser was selected with an initial learning rate of 0.001. A batch size
of 128 per training iteration was used to facilitate efficient learning.
All these hyper-parameters were determined by a random search
strategy for the best performing model on the development set of
the ACLEW dataset.

Before feeding the training data into the network, an online
standardisation strategy was employed, by applying the mean and
variance obtained from the ACLEW training set to the development
and test sets. For the LENA dataset, only the training set was used
in our experiments and it was standardised by using the LENA
training dataset mean and variance.

For AMTL, we train all three branches simultaneously, as each
training batch includes both weakly and strongly labelled data,
using Eq. 5 to optimise the whole network. The gradient reversal
operation is employed when merging all the losses to optimise the
feature extractor layer, as shown in Eq. 5.

4.3 Results and Discussions
Results are shown in Table 2. Note that all evaluations are based on
the results for the development and test sets of the ACLEW dataset.
The baseline system refers to the implementation without any MTL
or domain adversarial training processes. Basically, it can be seen
that the results obtained with the baseline system are much higher
than the chance level (i. e., 25 % of F1 or UAR), which indicates that
automatically assessing the maturity of infant vocalisation can be
fairly easily done at an above-chance level. Nevertheless, there is
still much room for improvement.

With the MTL strategy, the results are higher, and the UARs
in particular are significantly higher (two-tailed z-test, p < .05),
than with the baseline system; the UARs have been boosted from
47.7 % and 45.5 % to 54.3 % and 50.1 % on the development and test
sets, respectively. This implies that some knowledge is distilled
from the weakly labelled dataset (LENA) dataset to the strongly
labelled (ACLEW) dataset via the extraction of shared acoustic
representations, despite the former dataset having a different and
less accurate annotation scheme.

The domain adversarial training approach also significantly out-
performs (two-tailed z-test, p < .05) the baseline system in three
out of four cases. The benefit might stem from the fact that the large-
scale auxiliary weakly labelled dataset extends the representation
space extracted from a small dataset, while reducing the domain
mismatch among different training sets, avoiding overfitting to the
original training set to a certain degree.

Finally, when integrating the MTL approach and the domain
adversarial training approach, one can see that the proposed AMTL
system was significantly (two-tailed z-test, p < .05) superior to the
baseline system in all scenarios. Nevertheless, AMTL did not always
yield the best results among all investigated approaches. This might
partially relate to the fact that a lot of data are wrongly segmented
or annotated by the LENA system, limiting the effectiveness of
MTL.

5 CONCLUSIONS
To overcome the data sparsity problem for analysing the maturity of
infant vocalisations, we proposed an adversarial multi-task learning

Table 2: Performance comparison in terms of F1 and UAR
among the learning strategies. The cases where the investi-
gated systems have a statistical significance of performance
improvement over the baseline systemvia a two-tailed z-test
are marked by the “∗” symbol. Bold indicates best perfor-
mance for each metric and set.

[%] develop test

approaches F1 UAR F1 UAR

Baseline 49.5 47.7 47.4 45.5
Multi-task learning (MTL) 50.9 54.3∗ 48.6 50.1∗

Domain adversarial train. 51.9∗ 54.6∗ 49.5 50.0∗

Adversarial MTL 51.7∗ 53.9∗ 49.6∗ 50.0∗

approach to leverage the value of numerous weakly labelled data,
automatically annotated by the commercial LENA system [22]. De-
spite the messy characteristic of these augmented data, we obtained
a significant performance improvement compared with baseline
systems. In the future we aim to include a preprocessing step to
remove the wrongly-segmented or -labelled data prior to training.
Moreover, we may also consider integrating this approach with
other weakly supervised learning structures, e.g. auto-encoders.
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